Adapting to life at the end of the line: How Drosophila telomeric retrotransposons cope with their job.

نویسندگان

  • Mary-Lou Pardue
  • Pg Debaryshe
چکیده

Drosophila telomeres are remarkable because they are maintained by telomere-specific retrotransposons, rather than the enzyme telomerase that maintains telomeres in almost every other eukaryotic organism. Successive transpositions of the Drosophila retrotransposons onto chromosome ends produce long head-to-tail arrays that are analogous in form and function to the long arrays of short repeats produced by telomerase in other organisms. Nevertheless, Drosophila telomere repeats are retrotransposons, complex entities three orders of magnitude longer than simple telomerase repeats. During the >40-60 My they have been coevolving with their host, these retrotransposons perforce have evolved a complex relationship with Drosophila cells to maintain populations of active elements while carrying out functions analogous to those of telomerase repeats in other organisms. Although they have assumed a vital role in maintaining the Drosophila genome, the three Drosophila telomere-specific elements are non-LTR retrotransposons, closely related to some of the best known non-telomeric elements in the Drosophila genome. Thus, these elements offer an opportunity to study ways in which retrotransposons and their host cells can coevolve cooperatively. The telomere-specific elements display several characteristics that appear important to their roles at the telomere; for example, we have recently reported that they have evolved at least two innovative mechanisms for protecting essential sequence on their 5'ends. Because every element serves as the end of the chromosome immediately after it transposes, its 5'end is subject to chromosomal erosion until it is capped by a new transposition. These two mechanisms make it possible for at least a significant fraction of elements to survive their initial time as the chromosome end without losing sequence necessary to be competent for subsequent transposition. Analysis of sequence from >90 kb of assembled telomere array shows that these mechanisms for small scale sequence protection are part of a unified set which maintains telomere length homeostasis. Here we concentrate on recently elucidated mechanisms that have evolved to provide this small scale 5' protection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of piRNAs in the Drosophila telomere homeostasis

Drosophila telomeres are maintained as a result of transpositions of specialized telomeric retrotransposons. The abundance of telomeric retroelement transcripts, as well as the frequency of their transpositions onto the chromosome ends, is controlled by a PIWI-interacting RNA (piRNA) pathway. In our recent report, we demonstrate strong evidence of piRNA-mediated transcriptional silencing of tel...

متن کامل

Drosophila telomeres: A variation on the telomerase theme.

In Drosophila, the role of telomerase is carried out by three specialized retrotransposable elements, HeT-A, TART and TAHRE. Telomeres contain long tandem head-to-tail arrays of these elements. Within each array, the three elements occur in random, but polarized, order. Some are truncated at the 5' end, giving the telomere an enriched content of the large 3' untranslated regions, which distingu...

متن کامل

Evolution of species-specific promoter-associated mechanisms for protecting chromosome ends by Drosophila Het-A telomeric transposons.

The non-LTR retrotransposons forming Drosophila telomeres constitute a robust mechanism for telomere maintenance, one which has persisted since before separation of the extant Drosophila species. These elements in D. melanogaster differ from nontelomeric retrotransposons in ways that give insight into general telomere biology. Here, we analyze telomere-specific retrotransposons from D. virilis,...

متن کامل

Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons

The Drosophila non-long terminal repeat (non-LTR) retrotransposons TART and HeT-A specifically retrotranspose to chromosome ends to maintain Drosophila telomeric DNA. Relatively little is known, though, about the regulation of their expression and their retrotransposition to telomeres. We have used rapid amplification of cDNA ends (RACE) to identify multiple transcription initiation and polyade...

متن کامل

Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region.

Six copies of insertion elements accumulate in the subtelomeric region immediately proximal to the telomeric repeats on Chlorella chromosome I. The elements, designated Zepps, bear the characteristic features of non-viral (LINE-like) retrotransposons, including a poly(A) tail, 5'-truncations, a retroviral reverse transcriptase-like ORF and flanking target duplications. Detailed sequence analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mobile genetic elements

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 2011